29.6 集成与部署

16 分钟阅读

29.6.1 系统集成#

整体集成架构#

class IntegratedCodingAgent: """集成的编程 Agent"""

def init(self, config: AgentConfig): self.config = config

初始化核心组件

self.llm_client = LLMClient(config.llm_config) self.tool_manager = ToolManager() self.memory_system = MemorySystem(config.memory_config)

初始化能力模块

self.code_generator = CodeGenerator(self.llm_client) self.code_understander = CodeUnderstander(self.llm_client) self.debugger = DebuggingWorkflow(self.llm_client, self.tool_manager)

初始化交互管理

self.session_manager = SessionManager() self.context_manager = ContextManager()

初始化工具

self._initialize_tools()

初始化插件系统

self.plugin_manager = PluginManager()

初始化监控

self.monitor = PerformanceMonitor()

def _initialize_tools(self): """初始化工具"""

文件操作工具

self.tool_manager.register_tool(FileReadTool()) self.tool_manager.register_tool(FileWriteTool()) self.tool_manager.register_tool(FileSearchTool())

代码执行工具

self.tool_manager.register_tool(CodeExecuteTool()) self.tool_manager.register_tool(TestRunnerTool())

版本控制工具

self.tool_manager.register_tool(GitTool())

搜索工具

self.tool_manager.register_tool(SearchTool())

文档工具

self.tool_manager.register_tool(DocumentationTool())

async def process_request(self, request: UserRequest) -> AgentResponse: """处理用户请求"""

开始监控

self.monitor.start_timer('request_processing')

try:

1. 获取或创建会话

session = self.session_manager.get_or_create_session( request.session_id )

2. 构建上下文

context = await self.context_manager.build_context( request, session )

3. 理解意图

intent = await self._understand_intent(request, context)

4. 根据意图选择处理流程

if intent.type == 'code_generation': response = await self._handle_code_generation( request, context, intent ) elif intent.type == 'code_understanding': response = await self._handle_code_understanding( request, context, intent ) elif intent.type == 'debugging': response = await self._handle_debugging( request, context, intent ) else: response = await self._handle_general_request( request, context, intent )

5. 更新会话

session.add_interaction(request, response)

6. 存储到记忆系统

await self.memory_system.store_interaction(request, response)

return response

except Exception as e: logger.error(f"Error processing request: {e}") return AgentResponse( text=f"An error occurred: {str(e)}", success=False, error=str(e) ) finally:

停止监控

duration = self.monitor.stop_timer('request_processing') self.monitor.record_metric('request_duration', duration)

async def _understand_intent(self, request: UserRequest, context: Context) -> Intent: """理解用户意图""" prompt = f""" 分析用户请求的意图:

用户请求:{request.text} 上下文:{context}

请识别:

  1. 意图类型(代码生成、代码理解、调试、优化等)
  2. 具体任务
  3. 相关的编程语言
  4. 需要的工具

以 JSON 格式返回。 """

response = await self.llm_client.complete(prompt) return self._parse_intent(response)

async def _handle_code_generation(self, request: UserRequest, context: Context, intent: Intent) -> AgentResponse: """处理代码生成请求"""

提取需求

requirement = await self.code_generator.extract_requirement( request.text )

设计架构

architecture = await self.code_generator.design_architecture( requirement )

生成代码

generated_code = await self.code_generator.generate_code( architecture, requirement )

验证代码

validation_result = await self.code_generator.validate_code( generated_code, requirement )

生成响应

response_text = await self._generate_code_generation_response( requirement, architecture, generated_code, validation_result )

return AgentResponse( text=response_text, success=validation_result.passed, data={ 'requirement': requirement, 'architecture': architecture, 'code': generated_code, 'validation': validation_result } )

async def _handle_code_understanding(self, request: UserRequest, context: Context, intent: Intent) -> AgentResponse: """处理代码理解请求"""

解析代码

parsed_code = await self.code_understander.parse_code( request.code )

分析结构

structure = await self.code_understander.analyze_structure( parsed_code )

分析语义

semantic = await self.code_understander.analyze_semantic( parsed_code, structure )

生成解释

explanation = await self.code_understander.generate_explanation( parsed_code, structure, semantic )

生成响应

response_text = await self._generate_code_understanding_response( parsed_code, structure, semantic, explanation )

return AgentResponse( text=response_text, success=True, data={ 'parsed_code': parsed_code, 'structure': structure, 'semantic': semantic, 'explanation': explanation } )

async def _handle_debugging(self, request: UserRequest, context: Context, intent: Intent) -> AgentResponse: """处理调试请求"""

执行调试工作流

debugging_result = await self.debugger.debug( request.code, request.execution_result )

生成响应

response_text = await self._generate_debugging_response( debugging_result )

return AgentResponse( text=response_text, success=True, data={ 'debugging_result': debugging_result } )

async def _handle_general_request(self, request: UserRequest, context: Context, intent: Intent) -> AgentResponse: """处理一般请求"""

使用 LLM 直接处理

prompt = f""" 处理用户请求:

用户请求:{request.text} 上下文:{context}

请提供有帮助的响应。 """

response_text = await self.llm_client.complete(prompt)

return AgentResponse( text=response_text, success=True )

29.6.2 API 服务#

REST API 实现#

bash
python

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel

app = FastAPI(title="Coding Agent API")

# 初始化 Agent
agent = IntegratedCodingAgent(config=load_config())

class CodeGenerationRequest(BaseModel):
    prompt: str
    language: str = "python"
    session_id: str = None

class CodeUnderstandingRequest(BaseModel):
    code: str
    language: str = "python"
    session_id: str = None

class DebuggingRequest(BaseModel):
    code: str
    error_message: str = None
    session_id: str = None

@app.post("/api/v1/generate")
async def generate_code(request: CodeGenerationRequest):
    """生成代码"""
    try:
        user_request = UserRequest(
            text=request.prompt,
            session_id=request.session_id or str(uuid.uuid4()),
            type='code_generation'
        )

        response = await agent.process_request(user_request)

        return {
            'success': response.success,
            'response': response.text,
            'data': response.data
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/api/v1/understand")
async def understand_code(request: CodeUnderstandingRequest):
    """理解代码"""
    try:
        user_request = UserRequest(
            text="Explain this code",
            code=request.code,
            session_id=request.session_id or str(uuid.uuid4()),
            type='code_understanding'
        )

        response = await agent.process_request(user_request)

        return {
            'success': response.success,
            'response': response.text,
            'data': response.data
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/api/v1/debug")
async def debug_code(request: DebuggingRequest):
    """调试代码"""
    try:
        execution_result = ExecutionResult(
            error=request.error_message
        ) if request.error_message else None

        user_request = UserRequest(
            text="Debug this code",
            code=request.code,
            execution_result=execution_result,
            session_id=request.session_id or str(uuid.uuid4()),
            type='debugging'
        )

        response = await agent.process_request(user_request)

        return {
            'success': response.success,
            'response': response.text,
            'data': response.data
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/api/v1/health")
async def health_check():
    """健康检查"""
    return {
        'status': 'healthy',
        'timestamp': datetime.utcnow().isoformat()
    }

@app.get("/api/v1/stats")
async def get_stats():
    """获取统计信息"""
    return {
        'performance': agent.monitor.get_stats(),
        'sessions': agent.session_manager.get_stats(),
        'memory': agent.memory_system.get_stats()
    }

## 29.6.3 CLI 工具

### 命令行接口

import click
@click.group()
def cli():
"""Coding Agent CLI"""
pass
@cli.command()
@click.argument('prompt')
@click.option('--language', default='python', help='Programming language')
@click.option('--output', '-o', help='Output file')
def generate(prompt, language, output):
"""Generate code from prompt"""
async def generate_code():
agent = IntegratedCodingAgent(config=load_config())
request = UserRequest(
text=prompt,
type='code_generation'
)
response = await agent.process_request(request)
if response.success and response.data:
code = response.data.get('code', {}).get('full_code', '')
if output:
with open(output, 'w') as f:
f.write(code)
click.echo(f"Code generated and saved to {output}")
else:
click.echo(code)
else:
click.echo(f"Error: {response.text}")
asyncio.run(generate_code())
@cli.command()
@click.argument('file', type=click.Path(exists=True))
def understand(file):
"""Understand code"""
async def understand_code():
agent = IntegratedCodingAgent(config=load_config())
with open(file, 'r') as f:
code = f.read()
request = UserRequest(
text="Explain this code",
code=code,
type='code_understanding'
)
response = await agent.process_request(request)
if response.success:
click.echo(response.text)
else:
click.echo(f"Error: {response.text}")
asyncio.run(understand_code())
@cli.command()
@click.argument('file', type=click.Path(exists=True))
@click.option('--error', help='Error message')
def debug(file, error):
"""Debug code"""
async def debug_code():
agent = IntegratedCodingAgent(config=load_config())
with open(file, 'r') as f:
code = f.read()
execution_result = ExecutionResult(error=error) if error else None
request = UserRequest(
text="Debug this code",
code=code,
execution_result=execution_result,
type='debugging'
)
response = await agent.process_request(request)
if response.success:
click.echo(response.text)
else:
click.echo(f"Error: {response.text}")
asyncio.run(debug_code())
@cli.command()
def interactive():
"""Interactive mode"""
async def interactive_mode():
agent = IntegratedCodingAgent(config=load_config())
session_id = str(uuid.uuid4())
click.echo("Coding Agent Interactive Mode")
click.echo("Type 'exit' to quit")
click.echo()
while True:
user_input = click.prompt("You")
if user_input.lower() == 'exit':
break
request = UserRequest(
text=user_input,
session_id=session_id
)
response = await agent.process_request(request)
click.echo(f"Agent: {response.text}")
click.echo()
asyncio.run(interactive_mode())
if __name__ == '__main__':
cli()

29.6.4 部署方案#

Docker 部署#

bash
dockerfile

# Dockerfile
FROM python:3.11-slim

WORKDIR /app

# 安装依赖
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# 复制代码
COPY . .

# 暴露端口
EXPOSE 8000

# 启动服务
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]

# docker-compose.yml
version: '3.8'
services:
agent:
build: .
ports:
- "8000:8000"
environment:
- LLM_API_KEY=${LLM_API_KEY}
- LLM_BASE_URL=${LLM_BASE_URL}
volumes:
- ./data:/app/data
restart: unless-stopped
redis:
image: redis:alpine
ports:
- "6379:6379"
restart: unless-stopped
postgres:
image: postgres:15-alpine
environment:
- POSTGRES_DB=coding_agent
- POSTGRES_USER=agent
- POSTGRES_PASSWORD=password
ports:
- "5432:5432"
volumes:
- postgres_data:/var/lib/postgresql/data
restart: unless-stopped
volumes:
postgres_data:

Kubernetes 部署#

bash
yaml

# deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: coding-agent
spec:
  replicas: 3
  selector:
    matchLabels:
      app: coding-agent
  template:
    metadata:
      labels:
        app: coding-agent
    spec:
      containers:
      - name: agent
        image: coding-agent:latest
        ports:
        - containerPort: 8000
        env:
        - name: LLM_API_KEY
          valueFrom:
            secretKeyRef:
              name: agent-secrets
              key: llm-api-key
        - name: LLM_BASE_URL
          valueFrom:
            configMapKeyRef:
              name: agent-config
              key: llm-base-url
        resources:
          requests:
            memory: "512Mi"
            cpu: "500m"
          limits:
            memory: "2Gi"
            cpu: "2000m"
        livenessProbe:
          httpGet:
            path: /api/v1/health
            port: 8000
          initialDelaySeconds: 30
          periodSeconds: 10
        readinessProbe:
          httpGet:
            path: /api/v1/health
            port: 8000
          initialDelaySeconds: 5
          periodSeconds: 5

---
apiVersion: v1
kind: Service
metadata:
  name: coding-agent-service
spec:
  selector:
    app: coding-agent
  ports:
  - protocol: TCP
    port: 80
    targetPort: 8000
  type: LoadBalancer

---
apiVersion: v1
kind: ConfigMap
metadata:
  name: agent-config
data:
  llm-base-url: "https://api.anthropic.com"

---
apiVersion: v1
kind: Secret
metadata:
  name: agent-secrets
type: Opaque
data:
  llm-api-key: <base64-encoded-key>

## 29.6.5 监控与日志

### 监控配置

from prometheus_client import Counter, Histogram, Gauge
# 定义指标
request_counter = Counter(
'agent_requests_total',
'Total number of requests',
['type', 'status']
)
request_duration = Histogram(
'agent_request_duration_seconds',
'Request duration',
['type']
)
active_sessions = Gauge(
'agent_active_sessions',
'Number of active sessions'
)
cache_hits = Counter(
'agent_cache_hits_total',
'Total cache hits'
)
cache_misses = Counter(
'agent_cache_misses_total',
'Total cache misses'
)
# 在 Agent 中集成监控
class MonitoredAgent(IntegratedCodingAgent):
"""带监控的 Agent"""
async def process_request(self, request: UserRequest) -> AgentResponse:
# 记录请求开始
request_counter.labels(
type=request.type,
status='processing'
).inc()
with request_duration.labels(type=request.type).time():
try:
response = await super().process_request(request)
# 记录成功
request_counter.labels(
type=request.type,
status='success' if response.success else 'error'
).inc()
return response
except Exception as e:
# 记录错误
request_counter.labels(
type=request.type,
status='error'
).inc()
raise

日志配置#

bash
python

import logging
from logging.handlers import RotatingFileHandler

def setup_logging():
    """配置日志"""
    logger = logging.getLogger('coding_agent')
    logger.setLevel(logging.INFO)

    # 控制台处理器
    console_handler = logging.StreamHandler()
    console_handler.setLevel(logging.INFO)
    console_format = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
    )
    console_handler.setFormatter(console_format)
    logger.addHandler(console_handler)

    # 文件处理器
    file_handler = RotatingFileHandler(
        'agent.log',
        maxBytes=10*1024*1024,  # 10MB
        backupCount=5
    )
    file_handler.setLevel(logging.DEBUG)
    file_format = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(funcName)s:%(lineno)d - %(message)s'
    )
    file_handler.setFormatter(file_format)
    logger.addHandler(file_handler)

    return logger

# 在 Agent 中使用
logger = setup_logging()

class LoggingAgent(IntegratedCodingAgent):
    """带日志的 Agent"""

    async def process_request(self, request: UserRequest) -> AgentResponse:
        logger.info(f"Processing request: {request.type}")

        try:
            response = await super().process_request(request)

            if response.success:
                logger.info(f"Request completed successfully")
            else:
                logger.warning(f"Request completed with errors: {response.error}")

            return response
        except Exception as e:
            logger.error(f"Request failed: {e}", exc_info=True)
            raise

29.6.6 最佳实践#

1. 安全性#

  • 使用环境变量存储敏感信息
  • 实现请求认证和授权
  • 限制代码执行权限
  • 输入验证和清理

2. 可扩展性#

  • 使用异步处理提高并发
  • 实现缓存机制减少重复计算
  • 支持水平扩展
  • 使用消息队列处理异步任务

3. 可靠性#

  • 实现重试机制
  • 使用断路器模式
  • 健康检查和自动恢复
  • 数据持久化和备份

4. 可观测性#

  • 完善的日志记录
  • 性能监控和告警
  • 分布式追踪
  • 指标收集和分析

通过合理的集成和部署,我们可以将编程 Agent 部署到生产环境,为用户提供稳定、高效的编程辅助服务。

标记本节教程为已读

记录您的学习进度,方便后续查看。